The role of language and experience with nature in the development of reasoning about living kinds

Andrzej Tarłowski¹ & Ewa Haman²

- 1. University of Finance and Management in Warsaw
 - 2. University of Warsaw

Domain specific challenges

Physics

Object properties, contact causality

Psychology

Beliefs, desires, mental causality

Biology

Diversity of life, internal causality

The role of categories

- Organize experience
- Allow communication
- Help extend knowledge through inference.

- Inductive potential varies by domain and depending on hierarchy level.
- Category based inference particularly important within living kinds.

Categorization - sources

- Perceptual
- e.g. cats acquired by 3mos by mere exposure to a dozen instances (Quinn et al. 1993)
- Linguistic
- Labels support categorization in infants. This support is 'smart'/selective. Superordinate categories acquired better when named with a noun, subordinates better when adjectives, no label effect for basic levels (Waxman et al..)
- Conceptual
- Booth 2009 Conceptual (causal) information facilitates word learning/concept acquisition. Categorization sensitive to domain/property interaction Diesendruck & Perez, 2013

Hierarchy

Fido is a

poodle \rightarrow dog \rightarrow mammal \rightarrow animal \rightarrow living thing

Inferences strongest at basic level

Superordinates most strongly 'conceptually loaded' & intertwined with domain theories

Mature representation of living thing

- Explicitly categorize animals and plants as alive
- Represent commonalities between animals and plants (growth, reproduction, metabolism, responsiveness to environment etc.)
- Consider these commonalities as central in the biological domain
- Rely on *living thing* in induction to generate new knowledge

When is *living thing* acquired?

- Animates singled out early (maybe at birth) on the basis of goal directed movement, biological motion, faces (Craighero et al. 2011; Simion et al., 2008; Johnson & Morton, 1991).
- Inclusie *living thing* (animals and PLANTS)
 acquired late (6-10 years) (Piaget, 1929;
 Laurendeau & Pinard, 1962; Hatano et al.
 1993; Carey, 1985; Goldberg Thompson-Shill,
 2009)

Early foundations for living thing

- Intentionality (Carey, 1985)
- Psychology as suppor biology, humans as prototypical living things =intentional beings
- Teleological motion (Opfer & Siegler, 2004).
- Vitalism (Inagaki & Hatano 2002). Organs need vital force from food, water, sun to support growth & live, prevent illness
- Essentialism (Gelman, 2003, Atran et al. 2001; Leddon et al., 2008) Living kinds share internal executive causes

	Explicit categorization as alive	Commonalities represented as central	Inductive power of living thing
Intentionality	no		no
Teleological motion	With knowledge of teleological motion	Teleological motion	?
Vitalism	Not necessary, depending on task	Body parts need vital force to support life, growth, prevent death & illness	Projections of known biological properties from animals to plants and not artifacts
Essentialism	Often impeded by language	Innate potential, inductive power, boundary intensification, immutability	High at basic level Not clear at superordinate level

Variability in biological knowledge

Living thing and language/cultural differences
 Anggoro et al. 2008; Hatano et al. 1993; Taverna et al., 2014

Patterns of inductive inference

Carey 1985 vs. Ross et al., 2003; Tarlowski, 2006; Inagaki, 1990; Coley, 2012

Research questions?

- Do children rely on living thing in induction?
- Is experience with nature related to children's inferences?
- Is vocabulary size related to children's inferences?
- What is the place of humans in living thing concept?
- Is inductive inference related to categorization of living things?

How to test for reliance on *living thing* in induction?

- Dogs/people have blicks inside.
- Do tulips have blicks inside?

Category based induction (CBI)

'Classical' CBI task

Dogs have spleen inside.

Do bicycles/flies/sparrows/worms/bears?

Carey 1985; Ross et al. 2003; Inagaki & Hatano, 2002 etc.

Triad induction task

Gelman Markman, 1986; Coley, 2012 etc.

category against similarity / thematic match

Do children rely on living things in induction? Inductive learning task

- Mixture of 'classical' CBI and triad induction tasks
- Series of pairs of objects
- One object in a pair has the target feature
- Feedback given on training trials
- Performance on test trials indicates reliance on living things

Inductive learning with feedback task

- Participants presented with a sequence of pairs of objects, for each pair they select one object that they think has the target feature and receive feedback on training (*) trials.
- •Test trial responses provide a measure of reliance on *living thing* in induction

	Task	population	Additional measures	Sample size and age
Study 1	Inference humans → living vs. artifacts	Urban and rural children		N=72 Age: 5; 8
Study 2	Inference animals > plants vs. artifacts	Urban and rural children		N=37 Age: 5;6
Study 3	Inference humans > Plants vs. artifacts	Urban and rural children	Vocabulary size	N=52 Age: 5;6
Study 4	Inference humans > plants vs. artifacts	Small town children	Categorization as alive	N=57 Age 6 - 8 years
Study 5	Free descriptions of living kinds	Urban and rural children		N=22 Age: 5-6 years
Study 6	Parental reports Activities and interests	Urban and rural parents		N=50 Parents

Study 1 Projecting from humans to living things

Human →

- Living kind (animals and plants)
- Artifact

Details of the procedure

Training trials

On each of the 12 training trials a human was pitted against water.

Training trials always received feedback – the human had the feature.

Example training items:

Test Trials Living kinds

Subcategory descriptions:

- 1. Mammals
- 2. Other vertebrates
- 3. Arthropods

- 4. Neither plants nor typical animals
- 5. Small plants
- 6. Trees

Test Trials Artifacts

Category descriptions:

Category

- 1. Vehicles
- 2. Complex artefacts with some 'authonomous activity'
- 3. complex artefacts

- 4. Clothing and accesories
- 5. Containers
- 6. Simple metal artefacts

Projections of internal property from humans to living kinds (contrasted with artifacts) by rural and urban 5-year-olds

Conclusions

Rural children are more prone to rely on *living* thing in induction

How can the results be interpreted?

Compared to urban children

- rural children have better access to living kinds (humans, other animals and plants) and they use it in making inductive inferences
- rural children perceive animals and plants as more similar to humans
- rural children perceive artifacts as less similar to humans
- rural children like/prefer living kinds more or artifacts less

Study 2 Projections from animals to plants

Animals \rightarrow

Plants

Artifacts (with autonomous motion e.g. laptop, washing machine, clock)

37 urban and rural children (mean age 5;5)

Response patterns

12 test trials (plant versus artifact)

- 9 + artifact selections consistent artifact (p=0.07)
- 9+ plant selection consistent plant (p=0.07)
- Other pattern inconsistent

Results

- No urban vs. rural difference in plant selections.
- 60% plants for rural and 61% for urban
- 16% children consistently artifact, 44% consistently plant
- Overall, significantly above chance t(35) = 2.36 p<0.05

Conclusion

 Rural and urban children are equally disposed to expect internal commonalities between animals and plants

Study 3 Projections from humans to plants and vocabulary size

Inductive inference task

Humans → Plants vs. Artifacts (with autonomous activity e.g. laptop, washing machine, clock)

Vocabulary size
 (Picture Vocabulary Task OTSR)

OTSR Haman & Fronczyk, 2012 Simple questions (for nouns, verbs, adjectives):

Where is x? Gdzie jest koń?

Who is y-ing? Kto siedzi?

Percent of children who chose plants/artefacts consistently or were inconsistent

Correlations with vocabulary

Urban children

Plants

Consistency

Vocabulary

-0.19 NS

0.44*

Rural children

Plants

Consistency

Vocabulary

0.47*

0.14

Reliance on superordinate categories in induction is facilitated by a combination of direct experience and conceptual factors

	Small vocabulary	Large vocabulary
Urban		
rural		Rely on <i>living thing</i>

Tarlowski 2006

	Lay parents	Biology expert parents
Urban		
Rural		Rely on <i>animal</i>

Conclusions

- Direct experience must be paired with conceptual development to facilitate acquisition of higher order categories
- The role of language rich vocabulary = rich conceptual network
- Vocabulary size is an effect of rich conceptual input from caregivers

Study 4. Inductive inference and categorization as alive

- Intuctive inference task
 Humans → plants vs. artifacts
 and
- Categorization as alive (18 pictures of animals, plants, nonliving things)

Categorization as alive by children who systematically chose plants in inductive task and those who did not

Conclusion

 Children who rely on living thing in induction also categorize both and only plants and animals as alive.

How are rural and urban children different?

Study 5 Children's descriptions of animals

- Urban and rural children talked about various living kinds. They were encouraged to share their experiences and everything they knew about the living kinds. They were shown 7 sets of 6 photographs and they talked about 2 of each set. The choice was up to them.
- The sets included (various living kinds: domestic animals, small animals, prey wild animals, predators, birds, tropical animals)

Analysis of children's descriptions

Responses were coded into 7 categories:

- Relationship between a human and a living thing
- Repationship between a living thing and other a living thing
- Direct experience with a living thing
- Cultural experience with a living thing
- Description based on what can be seein in the image
- Description based on knowledge
- Emotional evaluation

Child's description of each living thing could contain more than one coding category.

Proportions of children that were scored the category at least once

Conclusions

 Rural children mention direct experiences, and living kind-living kind relationships more often in their descriptions than urban children do.

Study 6 Parental reports on children's activities and interests

- Internet survey
- Various fields of interest probed, e.g. nature related (animals & plants) conceptual, artistic (e.g. music& maths), entertainment (games, TV...)
- Proportion of time spent in rural environment correlates with the role nature plays in children's activities and interests r=0.4 p<0.05

Overall conclusions

- Reliance on living thing in induction begins to develop at age 5-6 years
- It is facilitated by direct experiences with nature but it's development requires conceptual foundation (rich network of concepts – rich vocabulary)

Future directions

- Multivariate tests
- Testing sources of biological knowledge
 (e.g. parent child conversations, nature walks)
- Interventions

Thank you

and thanks to

- Justyna Palejewska
- Patryk Gajewski
- Wioleta Kałużna
- Dorota Pietrusiewicz
- Tomasz Kubilus

for their contribution to these studies

Project financed from NCN grant

2011/01/B/HS6/00433